High-Yield Corn Management

- Current corn products have the potential to produce 300 bushels/acre if systematic integrated management practices are used.
- Omission plot research at the University of Illinois has shown that there are seven main factors that have the greatest impact on corn yield potential.
- A proactive, comprehensive management plan is required to consistently achieve high corn yields.

Several factors impact successful high-yield corn production systems. Corn yield is limited by a number of direct, indirect, and interacting factors. The major categories of yield-limiting factors include: weather stress, pest pressures, soil characteristics, and management decisions that impacts agronomic practices. Developing a comprehensive, proactive management plan prior to planting is critical for consistently achieving high corn yield. Season-long crop monitoring to identify potential stressful conditions is necessary for precisely deploying management tactics to preserve yield potential. Managing a high-yield corn system requires an integrated approach to address multiple interdependent factors that control corn physiology and yield.

Foundation Basics

Optimizing corn output is contingent upon building a solid foundation in each field. Before launching an intensive high-yield corn system, water management (drainage, conservation, irrigation); sound weed, insect, and disease management; and soil pH in the optimum range with adequate soil levels of phosphorous (P) and potassium (K) should be in place. Water management considers the seasonal distribution of rainfall, soil water holding capacity, and infiltration and runoff of rainfall. Subsurface drainage helps maintain the free water level in the soil at a depth that promotes root growth and healthy plant development, helps remove excess soil water; and permits air flow to facilitate important biological processes. Subsurface drainage can help maintain consistent crop yields by providing a more mellow soil, deeper plant root zone, less compaction; earlier, timely planting to maximize the growing season; earlier harvest, less soil erosion; and less runoff of nutrients (P). Precision farming practices can help identify and correct drainage problems.

Sound pest management means integrated systems are in place to keep difficult-to-control weed, insect, and disease problems minimized to reduce plant stress.

Weather

The weather is consistently unpredictable in crop production and a big determinant of yield potential (Table 1). Farmers can help offset weather variability by managing plant stresses such as soil compaction, nutrient availability, weed competition, insect and disease damage, poor soil drainage, and other factors that compound weather problems. Identifying the optimum planting window allows for early planting, full use of the growing season, and the potential for the crop to tolerate stressful conditions and pest pressure during pollination and grain fill. Reduced tillage, managing compaction, residue conservation, and proper nutrient placement can help conserve soil moisture for potential use at pollination and during grain fill.

Decision support tools that integrate software and hardware for monitoring environmental conditions and equipment performance can provide real-time decision-making support based on weather, soil, crop, and equipment performance. This allows a farmer to respond quickly to changing weather and field conditions, and anticipate yield-reducing agronomic issues. These tools have the potential to integrate data across multiple devices and equipment.

Fertility

Maintaining the proper nutrient balance between macro- and micro-nutrients in the soil and at critical phases of corn development, is crucial to high-yield corn production. Purdue University research shows that current corn products take up 27% more nitrogen (N) from the soil after flowering than older products. It also shows that optimum N levels in the plant increase uptake and utilization of P, K, and sulfur (S) to support higher corn yields. Higher N rates and plant densities resulted in greater micro-nutrient uptake and utilization for grain production. Protecting corn roots and leaf health can help the plant access and utilize more essential nutrients during reproductive growth stages.

In a favorable season, weather and N account for more than half of corn yield potential. Minimizing nutrient stress requires matching nutrient supply with plant needs. Timely application and loss prevention of N fertilizer are primary components of high-yield corn systems. Most N loss occurs after fall applications or during spring rainfall events. To minimize preplant and in-season N loss, and provide N closer to the optimum uptake time (V10 growth stage through grain fill), multiple applications are recommended. Research has shown that sequential application of N (just prior to planting, with starter fertilizer at
High-Yield Corn Management

a rate of 30 lb/acre N, before the V8 growth stage, and near tasseling, to be an effective N delivery system. The addition of N stabilizing products to help reduce volatility, leaching, or denitrification loss of N and potentially increase seasonal availability.

Deep banding (4 to 8 inches) P, K, and other nutrients under the row at planting, even on soils testing in the medium to high range for these nutrients, provided a significant benefit to yield production.

Seed Selection
Corn yield potential can vary widely between products. Matching products with the highest yield potential to soil productivity levels throughout a field is essential for maximizing yield potential. Corn products for high yield should have high yield genetics with tolerance for high plant densities and high rates of N. Genuity® SmartStax® RIB Complete® corn blend products help reduce plant stress from above and below ground insects, weeds, and other stresses. Products with improved drought tolerance may be a benefit as well.

Crop Rotation
Research studies have shown that there is a benefit to annually rotating corn with soybean and other crops versus continuous corn. Modern corn products and management practices have similar responses to crop rotations as older products and practices. The continuous corn yield penalty can be substantial. It is the result of accumulated corn residue, decreased soil mineralization of N, and poorer performance under hot/dry conditions. Fields where corn follows soybean can have better soil tilth, fewer or less intense pest problems, more manageable residue and a cleaner seedbed, and promote better overall vigor.

Plant Density
Corn products that respond to higher plant densities fit high-yield systems, but that response may be different from products that fit standard systems or in individual fields. The planting density should be matched to soil characteristics, topography, and productivity factors. Variable rate planting, precision seed distribution, and depth control, can help maximize stand establishment. Narrow or twin-row arrangements have been shown to be an effective way to accommodate higher plant populations and more equidistant plant spacing. Soil and yield mapping can improve variable rate planting plans and help make planter adjustments to improve seed spacing, singulation, and depth control required at higher plant densities.

Seed treatments, starter fertilizer, and compaction management can help promote vigorous, uniform seedling and root development that supports optimum yield potential. Acceleron® Corn Seed Treatment Products provide protection against seedling and seed diseases as well as early-season insects and pests. Adding Poncho®/VOTiVO® will provide better secondary insect protection along with early-season nematode protection.

Tillage and Growth Regulators
Using a tillage system appropriate for field conditions may lead to increased yield, profit, and soil and water conservation. The primary role of tillage in high-yield management systems is to distribute residue and aerate and dry the soil to create a suitable seedbed while preserving soil moisture for use later in the season. Minimizing tillage traffic and avoiding soil compaction are key considerations for any tillage program. Tillage is not nearly as important as many farmers assume it is for realizing high yields, based on University of Illinois research.

Growth regulators can help can help promote healthy plant growth, preserve green leaf tissue or ward off pest problems that can limit corn yield. Examples include, the growth regulator effect of strobilurin-based fungicides on leaf greening and the overall improved plant health attributed to corn seed treatments that exhibit growth regulator effects.

Yield potential in current genetics may be substantially higher than current standards but is compromised by weather stress and unsatisfactory crop management decisions. High yields are the result of proactive management plans and proper seed selection. Farmers can make decisions to optimize the seven factors summarized in this report to reach the high-yield goal for each field.

Sources: 1 Below, F.E. 2014. Management factors that contribute to high corn yields. http://cropphysiology.cropsci.illinois.edu (verified 02/10/2014). University of Illinois. 2 Hofstrand, D. 2008. Economics of tile drainage. Special Report 13. Iowa State University. 3 Nielsen, R.L. Understanding factors that limit corn yield. Purdue University. 4 Ciampitti, I.A. and T.J. Vyn. 2013. High nitrogen rates increase micronutrient uptake, storage in corn. Purdue University. 5 Monsanto Company is a member of Excellence Through Stewardship® (ETS), Monsanto products are commercialized in accordance with ETS Product Launch Stewardship Guidance, and in compliance with Monsanto’s Policy for Commercialization of Biotechnology-Derived Plant Products in Commodity Crops. This product has been approved for import into key export markets with functioning regulatory systems. Any crop or material produced from this product can only be exported to, or used, processed or sold in countries where all necessary regulatory approvals have been granted. It is a violation of national and international law to move material containing biotech traits across boundaries into nations where import is not permitted. Growers should talk to their grain handler or product purchaser to confirm their buying position for this product. Excellence Through Stewardship® is a registered trademark of Biotechnology Industry Organization. B.t. products may not yet be registered in all states. Check with your Monsanto representative for the registration status in your state. IMPORTANT IPM INFORMATION: Genuity® RIB Complete® corn blend products do not require the planting of a structured refuge except in the Cotton-Growing Area where corn earworm is a significant pest. Genuity® SmartStax® RIB Complete® is a biended seed corn product. See the IRM/Grower Guide for information and requirements. Individual results may vary, and performance may vary from location to location and from year to year. This result may not be an indicator of results you may obtain as local growing, soil and weather conditions may vary. Growers should evaluate data from multiple locations and years whenever possible. ALWAYS READ AND FOLLOW PESTICIDE LABEL DIRECTIONS. Roundup Ready® crops contain genes that confer tolerance to glyphosate, the active ingredient in Roundup® brand agricultural herbicides. Roundup® brand agricultural herbicides will kill crops that are not tolerant to glyphosate. Acceleron®, Genuity®, RIB Complete®, Leaf Design®, Roundup Ready 2 Technology and Design®, Roundup Ready®, Roundup® and SmartStax® are trademarks of Monsanto Technology LLC. LibertyLink® and the Water Droplet Design® is a registered trademark of Bayer. HerculeX® is a registered trademark of Dow AgroSciences LLC. Poncho® and VOTiVO® are registered trademarks of Bayer. All other trademarks are the property of their respective owners. ©2014 Monsanto Company. 02252014JSC.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td>27%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>26%</td>
</tr>
<tr>
<td>Seed Selection</td>
<td>19%</td>
</tr>
<tr>
<td>Crop Rotation</td>
<td>10%</td>
</tr>
<tr>
<td>Plant Density</td>
<td>8%</td>
</tr>
<tr>
<td>Tillage</td>
<td>6%</td>
</tr>
<tr>
<td>Growth Regulators</td>
<td>4%</td>
</tr>
</tbody>
</table>

Table 1. Top 7 Factors for High Corn Yield Based on University of Illinois Research.